The Soup in My Fly: Evolution, Form and Function of Seminal Fluid Proteins

نویسنده

  • Tracey Chapman
چکیده

The seminal fluid of males from vertebrate and invertebrate taxa is a complex mixture of biologically potent molecules and is far more than a medium to support the successful transit of sperm. But the complexity of this mixture, even in the fly, is only now being fully realised. Recent research is highlighting extraordinarily high evolutionary lability within the genes that encode seminal fluid proteins and is revealing an almost bewildering variety of fitness-related functions. Hence the study of the chemical messages passed from males to females at mating provides a unique window through which to view evolution in action. It was in the 1960s that details of the nature of the seminal fluid substances that transform the behaviour of female Drosophila melanogaster following mating first started to emerge [1–3]. This elegant work showed that the characteristic refusal of recently mated females to mate again was caused by mating or seminal fluid in the short term and by seminal fluid together with sperm in the longer term [1,2]. The “sex peptide” that was responsible for this effect was identified in 1988 [4]. There then followed first a trickle [5,6] and then an ever increasing stream [7,8] of identifications of the non-sperm seminal fluid proteins [9]. Findlay et al. [10] now provide a tour de force demonstration of the identification of a further 63 proteins, bringing the total so far to 133 proteins confirmed as transferred during mating along with sperm (Figure 1). To put this into perspective, this number represents 35% of the number of proteins (381) found in the Drosophila sperm proteome [11]. What then is the purpose behind such a diverse and biologically active soup?

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ontogenetic changes in seminal fluid gene expression and the protein composition of cricket seminal fluid.

The ejaculates of most internally fertilizing species consists of both sperm and seminal fluid proteins. Seminal fluid proteins have been studied largely in relation to their post-mating effects on female reproductive physiology, and predominantly in genomically well-characterized species. Seminal fluids can also play important roles in sperm maturation and performance. In the field cricket Tel...

متن کامل

Combined EST and proteomic analysis identifies rapidly evolving seminal fluid proteins in Heliconius butterflies.

Seminal fluid proteins (SFPs) directly influence a wide range of reproductive processes, including fertilization, sperm storage, egg production, and immune response. Like many other reproductive proteins, the molecular evolution of SFPs is generally characterized by rapid and frequently adaptive evolution. However, the evolutionary processes underlying this often-documented pattern have not yet...

متن کامل

Correlation between Seminal Fluid Analysis and Levels of Gonadotropins in Serum and Seminal Plasma of Normozoospermic Men and Infertile Patients

Background Levels of serum gonadotropins have direct effects on testicular functions and spermatogenesis. Assessment of levels of serum gonadotropins from fathered subjects and infertile patients indicates wide range diversity. In this study, we tried to find out whether the levels of seminal FSH and LH affect the parameters of seminal fluid analysis (SFA) and if there is any correlation betwee...

متن کامل

Pervasive Adaptive Evolution in Primate Seminal Proteins

Seminal fluid proteins show striking effects on reproduction, involving manipulation of female behavior and physiology, mechanisms of sperm competition, and pathogen defense. Strong adaptive pressures are expected for such manifestations of sexual selection and host defense, but the extent of positive selection in seminal fluid proteins from divergent taxa is unknown. We identified adaptive evo...

متن کامل

Reactive Oxygen Species and Antioxidant in Seminal Plasma and Their Impact on Male Fertility

Spermatozoa generate reactive oxygen species (ROS) in physiological amounts which play a role in sperm functions during sperm capacitation acrosome reaction (AR) and oocyte fusion. In addition damaged sperm are likely to be the source of ROS. The most important ROS produced by human sperm are hydrogen peroxide superoxide anion and hydroxyl radicals. Besides human seminal plasma and sperm posses...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS Biology

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2008